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Abstract. We present a novel solution to soft-body registration be-
tween a pre-operative 3D patient model and an intra-operative surface
mesh of the patient lying on the operating table, acquired using an in-
expensive and portable depth (RGBD) camera. The solution has several
clinical applications, including skin dose mapping in interventional radi-
ology and intra-operative image guidance. We propose to solve this with
a robust non-rigid registration algorithm that handles partial surface
data, significant posture modification and patient-table collisions. We
investigate several unstudied and important aspects of this registration
problem. These are the benefits of heterogeneous versus homogeneous
biomechanical models and the benefits of modeling patient/table inter-
action as collision constraints. We also study how abdominal registration
accuracy varies as a function of scan length in the caudal-cranial axis.

1 Introduction, Background and Contributions

An ongoing and major objective in computer-assisted abdominal interventional
radiology and surgery and is to robustly register pre-operative 3D images such
as MR or CT, or 3D models built from these images, to intra-operative data.
There are two broad clinical objectives for this. The first is to facilitate automatic
radiation dose mapping and monitoring in fluoroscopy-guided procedures [1, 2],
using a pre-operative model as a reference. The most important aspect is reg-
istering the skin exposed to primary radiation. Good registration would enable
dose exposure monitoring across the patient’s skin, and across multiple treat-
ments. The second clinical objective is to achieve interventional image guidance
using pre-operative 3D image data if interventional 3D imaging is unavailable.
Recently methods have been proposed to register a pre-operative 3D model using
external color [3] or depth+color (RGBD) images [4-7], capturing the external
intra-operative body shape and posture of the patient, operating table and sur-
rounding structures. The advantages of registering with color or RGBD cameras
is they are very low-cost, very safe, compact, and large regions of the patient’s
body can be imaged in real-time. They also facilitate ‘body see-through’ AR
visualization using hand-held devices such as tablets or head-mounted displays



Fig. 1. Porcine dataset. (a) Example of supine position, (b) RGBD scan correspond-
ing to (a), (c) CT model corresponding to (a) with segmented surface markers. (d-f)
equivalent images with a right-lateral position.

Their disadvantage is that the internal anatomy cannot be imaged. Therefore we
can only establish correspondence (data association) on the patient’s visible sur-
face, which can be difficult particularly in the abdominal region, where the skin
has few distinguishing geometrical features. The second main difficulty are large
occluded regions. For example, for patients in the supine position the posterior
is never visible to the camera. Because of these difficulties, previous registration
methods that use external cameras have been limited to rigid registration [3-7].
These methods cannot handle soft-body deformation, which is unavoidable and
often difficult to precisely control. Such deformation can be significant, which is
particularly true when the patient’s lying position is different. For example, CT
and MR are mainly acquired in the supine position, but the procedure may re-
quire the patient in lateral or prone positions. We show our solution can improve
registration accuracy with strong posture changes.

The main contributions of this paper are both technical and scientific. Tech-
nically, this is the first solution to soft-body patient registration using a pre-
operative CT model and 3D surface meshes built from multiple external RGBD
images. We build on much existing work on fast, soft-body registration using
surface-based constraints. The approaches most robust to missing data, occlu-
sions and outliers, are currently iterative methods based on robust Iterative
Closest Point (ICP) [8-11]. These work by interleaving data association with de-
formable model fitting, while simultaneously detecting and rejecting false point
matches. These methods have been applied to solve other medical registration
problems including laparoscopic organ registration [9], and registering standing
humans with RGBD surface meshes e.g. [11]. We extend these works in the fol-
lowing ways: 1) to model table-patient interaction via table reconstruction and
collision reasoning, 2) outlier filtering to avoid false correspondences. Scientifi-
cally, it is well known that measuring soft-body registration accuracy with real



data is notoriously difficult, but essential. In related papers quantitative eval-
uation is performed using virtual simulations, with simplified and not always
accurate modeling of the physics and data. We have designed a systematic series
of experiments to quantitatively asses registration accuracy using real porcine
models in different body postures. The ethically-approved dataset consists of a
pig in 20 different postures, with 197 thin metal disc markers (10mm diameter,
2mm width) fixed over the pig’s body. For each posture there is a CT image, an
RGBD body scan and the marker centroids. The centroids were excluded from
the biomechanical models, preventing them being exploited for registration. We
could then answer important and unstudied questions:

— Does modeling patient/table collision improve registration results? Is this
posture dependent? Are the improvements mainly at the contact regions?

— Does using a heterogeneous biomechanical model improve registration com-
pared to a heterogeneous model? This tells us whether accurate biomechan-
ical modeling of different tissue classes/bones are required.

— How much of the abdominal region is required in the CT image for good
registration? We study this by varying image size in the caudal-cranial axis.

We also demonstrate qualitatively our registration algorithm on a human patient
in real operating room conditions for CT-guided percutaneous tumor ablation.
This result is the first of its kind.

2 Methods

2.1 Biomechanical Model Description

We take as input a generic biomechanical mesh model representing the patient’s
body (either partial or full-body). We denote the model’s surface vertices cor-
responding to the patient’s skin as Vg, and the interior vertices as V;. We use
f(p;x) : R? — R3 to denote the transform of a 3D point p in 3D patient coor-
dinates to patient scan coordinates, provided by the biomechanical model. This
is parameterized by an unknown vector x, and our task is to recover it. In our
experiments we model Fj/(x) using a mass-spring model generated from seg-
mentations provided by [12]. We used Tetgen to generate tetrahedral meshes
from surface triangles, which formed the interior vertex set V;. We emphasize
that the algorithm is compatible with any first order differentiable biomechanical
model.

2.2 Intra-operative Patient Scanning and Segmentation

We scan the patient using a hand-held RGBD camera (Orbic Astra Pro), that is
swept over the patient by an assistant. Another option for scanning would be to
use ceiling-mounted RGBD cameras, however this has some limitations. The cost
is higher, there may be line-of-sight problems, and closer-range scanning is not
generally possible (<1m), which limits depthmap accuracy. We reconstruct 3D
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Fig. 2. NLD of markers for different configurations: row (1) small posture changes
(left), large changes (center) and markers localized only on the table (right), row (3)
different section sizes (corresponding to row(2)), from P1 (biggest section) to P6 (small-
est section), with supine postures (left) and lateral postures (right).

surface meshes from the RGBD video using an existing reconstruction method
[13] but any other method could be used. The scanning process can be performed
in approximately 10 seconds, allowing it to be done during a single breath hold to
circumvent breathing artifacts. To reduce occlusions, we perform scanning before
surgical coverings are placed. We denote the fused output by the vertex set Q.
When using [13] this is typically of size O(10%). We model the table as a planar
surface with a flat thin padded top layer, which is valid in most real conditions.
We use the distance ¢t € Rt mm to denote the maximal compression the padded
layer can undergo for any patient, which can be measured once a priori. We fit
a plane in the form ax + by + ¢z + d = 0 to the points in Q corresponding to the
table top. This is done using RANSAC, where the largest planar region is found
within a maximal depth of 1m to the camera. This heuristic is used to eliminate
the ground plane.

2.3 Registration Problem Formulation

We formulate the problem as iterative energy minimization based on [9, 8]. The
energy has the form E(X) = EM (X) + )\ICPEICP(X; VS7 Q) +Ecollisi0n (X; Vsa VI);
where A\;cp € RT is the ICP weight. The term E;cp is the ICP energy, which
attracts the model’s transformed surface vertices V, to fit to their closest vertices
in Q, while simultaneously handling mismatches, which are in practice inevitable.



We compute the closest vertices using fast matching on the GPU, using the
computer vision library OpenCV. We then filter out matches that are strongly
likely to be outliers (e.g. matches to surrounding objects on the table, or the table
itself). This filter is derived from [13], by measuring the angle between surface
normals of the matched points, and rejecting each match which disagrees by
a tolerance threshold 7. We set this to 45 degrees. We denote the remaining
matches by the set {(pi,qi)}, pi € Vs, a; € Q. We define Ejcp as:

Ercp(x;Vs,Q) = th (0] (f(pi) — i) (1)

where n; denotes the normal of point q; and p;, denotes the Huber norm. This
defines a point-to-plane distance function, which improves convergence in ICP by
allowing surfaces to slice across each other during optimization [14]. The Huber
norm is used to reduce the influence of any remaining outlier matches on the
energy function. This is essential to achieve good robustness.

The term FE.o15si0n 1S the table collision energy, which prevents model vertices
penetrating the table. We assume that the patient’s body is always above the
table, which is valid is practically all cases. Collision is handled by forcing all
model vertices to exist above the table at a state of maximum pad compression.
We do this using a signed distance-to-table function d(p). For a planar table this
is d(p) = [a, b, ¢]p + d — t. The extension to non-planar tables can be handled by
modifying d(p) according to the table’s shape. We define the penalty as:

Ecollision (X§ Vsa VI) = Ok Z Inax(d(p)a 0) (2)
PEV:UVr

where o, is the penalty coefficient. At each iteration oy is increased by a factor of
10. At convergence the collision constraint is exactly enforced. To avoid incorrect
data association with the table, we eliminate all ICP matches that associate
points on the scan that correspond to the table. This is done with a distance-
to-table threshold 7 with a default of 10mm.

2.4 Optimization and Initialization

We adopt the method in [15] to reduce the deformable model’s deformation
space, exploiting the fact that feasible deformations tend to be mostly smooth.
This works by performing a modal analysis using the model’s volumetric Lapla-
cian L. The eigenvectors of LTL with lowest eigenvalues correspond to the
smoothest modes of variation. The reduced model is parameterized by x with a
default length of 200. We optimize E(x) iteratively using a stiff-to-flexible strat-
egy [9, 8], which is important to avoid local minima. Initially the model is kept
rigid, by setting A;cp to small value (1.1 in our experiments). We then optimize
E(x) using a single Gauss-Newton iteration, and increase Ajcp by a factor (we
use a default of 1.2). We then repeat the process, truncating A;cp to a maximal
value, which we set to 10 times the initial value. We continue until convergence
is detected or a maximum number of iterations is reached (we use a limit of 50



iterations). We initialize using a roughly-estimated rigid transform. This is cur-
rently done by 6 manual landmark correspondences between the model’s surface
and the scanned surface, then running Horn’s algorithm in OpenCV. In future
works, automated landmarks extraction can also be used (computed using 2D
features learnt [16] for instance).Landmark assocations can be added to Eq.(2)
with an extra energy term, with a similar form as the ICP term but with point-
to-point distances and fixed associations. In the experimental results we did not
include this to validate the performance of ICP-only association.

3 Experimental Results

3.1 Quantitative Analysis with Porcine Datasets

We performed this using a euthanized 50Kg pig with 197 metal markers (lcm
diameter) quasi-uniformly arranged over its skin (Fig. 1). A reference CT was
made in the supine position, discretized using Tetgen into 19069 3D vertices
corresponding to 87524 tetrahedron. We then moved the pig to 19 different
positions, representing different intra-operative poses, on a CT table (13 supine
(Fig. 1a), 4 left-lateral (Fig. 1d) and 2 right-lateral). For each position we took a
CT image and a corresponding RGBD scan. We compared soft-body registration
with rigid ICP registration. This allowed us to measure the impact of modeling
soft-body deformation. Several conditions were tested: the first was where the
full reference CT was used to build the biomechanical model, and we compared
accuracy using either a homogeneous biomechanical model and a heterogeneous
model. We implemented the latter with two classes (bone and other), where the
stiffness of bone springs were 100 times stronger than the other class, to mimic
rigid body motion). We further tested with and without table collision. The
error metric we used is the Nearest Landmark distance (NLD). It is infeasible to
determine real matches between all markers, so nearest neighbours were used as
proxies. These were computed after registration by matching each marker in the
reference CT to its nearest neighbour in the CT associated with a given RGBD
scan. As the average spacing was large (approximately 50mm) compared to the
observed errors, the NLD approximates well the true endpoint error.

In the first row of Fig. 2 left, we show the marker endpoint error for the
13 supine positions averaged over all 197 markers. Here the pig’s deformation
is smaller than in the lateral positions. We observe a considerable improvement
using the soft-body models in most cases. There is no substantial improvement
in the first case, the reason being that the body posture was more similar to the
reference CT posture. We observe a general small improvement using the het-
erogeneous model and with the addition of table collision constraints. In the first
row of Fig. 2 middle, we show similar results for the lateral positions. We gener-
ally observe a larger improvement with the heterogeneous versus homogeneous
model, justifying its use for large deformations caused by posture change. How-
ever there is little to no improvement using the collision constraints. In the first
row of Fig. 2 right, we show NLD for the lateral postures, measured only at the
markers in contact with the table. Here we can see a general small improvement



Fig. 3. Results with a human patient in a live operating room. The RGBD scan (left),
rigid registration (middle) and deformable registration (right).

using the collision constraints, indicating they can improve localized registration
accuracy at the table/skin interface. The errors are larger than Fig. 2 middle
because they represent completely hidden regions. We then studied the influence
of the size of the abdominal region in the reference CT on registration accuracy.
Five reference models were tested by cropping the CT in the caudal-cranial axis
with six lengths (80 cm to 35 cm) centered on the abdomen, labeled P1 to P6.
These are shown from left to right in Fig. 2, row 3. We measured registration
accuracy using only the markers in the 35cm section (79 markers). This was to
measure the influence of having more geometric information surrounding the ab-
dominal region (hips, arms, shoulders...). For this the heterogeneous model was
used with collision constraints. The results for the supine positions are given
in Fig. 2, bottom left. The results for the lateral positions are given in Fig. 2,
bottom right. We see a general reduction in registration accuracy with increased
cropping of the reference CT. The problem is caused by the reduced geometrical
information needed to ‘anchor’ the deformation at geometrically distinct regions.
This is clearly present when we move from P1 to P2, where arms and shoulders
regions are cropped out.

3.2 Qualitative analysis with a Human Patient

We tested our method in our local hospital for registering a human patient un-
der general anesthetic, before undergoing a percutaneous radio frequency tumor
ablation (Fig. 3). The idea was to check the reliability of our registration in
computer-assisted percutaneous surgery by visually checking the position of the
organs, and by assessing the surface fit. The patient was 58 years old. From her
CT scans, a model containing 4383 vertices and 19362 tetrahedron was extracted
and 13 organs were segmented and seen in the AR view. Results are presented
using AR visualization, using a standard external calibrated RGB camera on a
tripod. Both registration and AR visualization were performed live during the
operation. We see an improved result through deformable registration, clearly
demonstrated by inspecting the patient’s silhouette contours. This is the first
time soft-body registration has been performed using an intra-operative abdom-
inal RGBD scan of a human patient in an operating theater.
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Conclusion

We have presented a low-cost method to perform soft-body registration between
partial or full-body pre-operative 3D models and intra-operative, partial RGBD
scans. We have quantitatively evaluated using a challenging real porcine dataset,
which is the first of its kind and will be made public. The achieved accuracy is
sufficient for interventional radiation skin dose modeling [1]. It may also be suffi-
cient for rough AR visualization of internal structures, as we have demonstrated
with a real patient. In future work we will investigate the impact of more de-
tailed biomechanical models and evaluate internal registration accuracy using
segmented anatomical structures.
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